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Traditional Formulas For Decision Level Are Wrong For Small Numbers of Counts
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Abstract:  Traditional formulas for decision level (DL) and
minimum detectable amount (MDA) are given in numerous
sources, including the recent HPS.ANSI N13.30-1995,
Performance Standard for Radiobioassay and the Multi-Agency
Radiation Survey and /Site Investigation Manual (MARSSIM).
These formulas do not adequately account for the discrete
nature of the Poisson distribution for paired blank (equal count
times for background and sample) measurements, especially at
low numbers of counts.  We calculate the false positive rates
that occur using the traditional DL formula as a function of
acceptable false positive rate α and Poisson mean µ = ρt, where
ρ is the underlying Poisson rate and t is the counting time.
False positive rates exceed α by significant amounts for α ≤ 0.2
and µ <100 counts, peaking at 25% at µ ≅  0.71, nearly
independent of α.  Calculations were verified by Monte Carlo
simulations.  The original 1968 derivation of the DL was based
on knowing a good estimate of the mean and standard deviation
of background, ad case that does not hold for paired blanks and
low background rates.  We propose and evaluate several
alternative decision levels.  Many regulations, national
standards, guidance documents, and texts will have to be
corrected.

Introduction

When counting particles, such as in alpha spectroscopy for
measurement of 239Pu, one typically subtracts an estimate of
background counts from the counts of an unknown.  The
resulting difference or net count value can then be compared to
a statistic called decision level, DL.  If the net count value is
greater than the DL, then one makes the decision that there is
activity present above background.

The traditional formula for the decision level DL for the paired
blank scenario as a function of Nb observed background counts
and the acceptable false positive rate α is
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where kα is found from the cumulative Normal distribution:
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The Poisson distribution for Poisson mean µ  = ρt, where ρ is
the underlying Poisson rate (e.g., counts per second) and t is the
counting time (e.g., seconds), is
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Note that while N is an integer, µ is a non-negative real number.

Setting the decision level for bioassay excreta analyses is an
important function of the internal dosimetry program.  If it is
too high, potentially significant intakes will be missed.  If it is
too low, resources will be wasted on unnecessary resampling

and reanalyses.  The sampled population may also loose
confidence in the program if they suspect the internal
dosimetrist is “fishing” for the right answer.  It is therefore
important to verify that the decision level (DL; also known as
the critical level, LC ) employed is providing the desired results.
It is given by
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and when there is no activity in the sample
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as shown in Eq. (1).

Methods

Two methods were used to determine the actual false positive
rates α′ when Eq.(1) is used for the paired blank counting
problem.

Monte Carlo Simulation. The first method was a Monte Carlo
simulation.  For each of 57 values of µ  (0.01 through 100), a
Poisson distribution was randomly sampled.  This value was
stored as the background observation.  Then the same
distribution, this time representing an unknown containing no
analyte, was sampled again and stored as the unknown.  A DL
was computed using Eq.(1), and the net rate (i.e., unknown –
background) was compared to it.  If the net result was greater
than or equal to the DL, for that α, then the decision was
“activity was detected above background.”  All such decisions
are false positives, since there is no net activity present.  This
procedure was repeated 106 times for each mean and for each of
18 values of α (0.5, 0.2, 0.1, 0.05, etc., down to 10-6).  The
results were slightly noisy, but were in exact agreement with the
analytical method described below.

Analytical Solution.  The cumulative Poisson distribution up
through M is the sum of the Poisson distribution values:
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The function Trunc(x) returns the integer part of nonnegative
real number x.  The false positive rate for a Poisson mean µ and
so-called Type I error probability α is given by summing over
nonnegative integers N of the product of two probabilities: the
probability of observing a background value of N counts given
a Poisson mean of µ; and the probability of observing more
than N plus the expected background counts in the sample
count.  The later probability is simply one minus the cumulative
Poisson distribution up to (N + DL(N, α)).  In symbolic terms,
we have the actual false positive rate α′ as
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Results

Actual false positive rates from Eq. (5), when counting blanks,
are plotted in Figure 1.  The horizontal axis is the long-term
number of mean background counts µb = ρbtb that one is trying
to estimate when one counts a reagent blank.  When subsequent
blanks are counted, of course, any and all decisions that activity
has been detected are wrong decisions, i.e., “false positives.”  If
the decision that activity has been detected is based on the use
of the ANSI N13.30 decision level, the false positive rates are
shown on the vertical axis for various levels of the acceptable
Type I error rate α.  If the ANSI N13.30 formula were correct,
each curve would be horizontal line equal to the value of α,
independent of background rate.  Clearly, the ANSI N13.30
decision level formula is not correct.

Figure 1 shows that the false positive rate is essentially
independent of α below 0.3 counts, and if α ≤ 0.2, this is true
almost up to µb = 1.  Figure 1 also shows that for values of α of
0.1 or less, the claimed false positive rate, that is, α, is not even
achieved with a background rate µb of 100!   For very tiny
values of α, the rate is not even close.  For α equal 10-6, the
false positive rate at 100 background counts is 25.1 × 10-6.  For
α ≤ 0.1, the maxima of the curves are about 0.25, and occur
near 0.7 to 0.72 counts, depending only weakly on the value of
α.  In the interval 0.3 ≤ µ ≤ 1.3, the false positive rate is above
0.2 regardless of the value of α.

The false positive rate for very low background rates using the
Currie DL is due almost entirely to the probability of observing
zero background counts.  Regardless of the α value applied the
square root of zero is zero, and the DL will be zero.  Therefore,
any observed count will be interpreted as “detected.”  For very
low background rates, e.g., 0.01, one observes zero in about
99% of cases, and one in the other 1% of cases.  Similar rates
pertain for a blank about which one is trying to make an
inference.  Thus for those 1 in 100 blanks for which one
observes 1 count, the probability is 99% that the paired
background measurement will have been 0, and that a false
positive decision will be made.  The false positive rate is then
0.99 × 0.01, or approximately 0.01.  For very low background
rates the probability of observing a false positive with Currie’s
rule is approximately equal to the probability of observing one
or more counts in the counting period.

How Can So Many People Have Been Wrong For Over 30
Years?

Eq. (1) was popularized by, and is generally ascribed to, Currie
(1968).  It appeared earlier in a more general form for count rate
with count times not necessarily equal, as Rule D2 in Nicholson
(1963):
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and has appeared in one form or another in countless
publications since, including ANSI/HPS N13.30-1996 and
MARSSIM (Brodsky 1986; Currie 1968; Currie 1984; Health
Physics Society (HPS) 1996; Hickey et al. 1993; Lochamy
1976; Strom and Stansbury 1992; MARSSIM 1997).

The problem arose from the basic assumption that one has a
well-known estimate of the mean and standard deviation of the
background.  With low background rates one does not have a

good estimate of either one.  Currie’s treatment of the “paired
bland” case attempted to account for the increased uncertainty
in the background when it was counted for only as long as the
sample (as opposed to the well-known blank).  But when the
background rate is estimated form a measurement that is below
the long-term mean, the use of Currie’s DL (termed “critical
level,” Lc, in his 1968 paper) causes a large number of false
positive decisions that are not offset by the fewer false positive
decisions that result when the background rate is estimated form
a measurement that is above the long-term mean.  In particular,
if the background is estimated from an observation of zero, one
must decide that any result ≥ 1 results in a decision of “activity
has been detected above background.”

Currie stated on page 22 of his NUREG document (1984) that
an assumption underlying the DL rule is that the estimated net
signal is an independent random variable having a known
distribution.  Thus, knowing (or having a statistical estimate
for) the standard deviation of the estimated net signal, one can
calculate the DL given the distribution and alpha.  He also
stated on page 49 of the same document that if there are at least
5 counts in the background estimate, use of the Poisson
variance as the estimate of the population variance is valid.
Applying the rule to very low background count rates violates
Currie’s own assumptions for the DL.  However, even at higher
background levels, Currie’s DL gives a false positive rate α′ >
α because the estimate of the mean (and therefore the estimate
of the variance) of the distribution is biased low.   The
background count is more like to give an estimate of the mean
that is less than the true mean, than one that is larger than the
true mean.  The factor by which α′ using Currie’s DL
overestimates α is particularly large for small α.

Other Decision Rules

Following our conclusion that Currie’s formula does not give an
unbiased estimate of false positive results, other methodologies
were investigated.

Most Probable Value of Mean and Variance

Rainwater and Wu (1947) showed that the most probable values
of the mean and variance are not the observed value of the
mean, but a value larger than the observed value.  Although not
intuitively obvious, an example was given for clarification.  If
zero is observed, the mean is not necessarily also zero; therefore
the average value of the mean that produces zero observations
must be greater than zero, and the most probable value of the
mean is larger than the observed value.  One formal way of
addressing this is to use an uninformative Bayesian prior
probability distribution, which yields the result that the
expectation value of background when N counts are observed is
N + 1 (Friedlander and Kennedy 1955; Friedlander et al. 1963;
Stevenson 1966; Little 1982).   The variance is also N + 1.  This
leads to a decision level for the net count rate of
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If the observed value N is much greater than one, the distinction
between N and N + 1 is not important.  One approach we took
was to modify the Currie/ANSI N13.30 rule by using N + 1 as
the estimate of the variance, instead of N.

Binomial Distribution
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Nicholson (1963) and Sumerling and Darby (1981) describe
equivalent processes for determining a decision level using the
binomial distribution.  As described in Sumerling and Darby
(1981), if the background is not well known, the observation on
the sample may be compared with the background observation,
Nb counts in time tb, to see if they are consistent with any single
true count rate.  They, and others, argue that using both the
background and gross sample measurements to estimate the
background increases the power of the test.

The probability of observing value Ng, when the mean of the
quantity being measured is µg, is given by the Poisson
distribution
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The joint probability of making independent observations Ng
and Nb when the respective means are µg and µb  is given by
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Transforming to new variables Ng and Ntotal = Ng + Nb,
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where µtotal  = µg + µb  and Q = µg/(µg + µb).  The probability of observing Ng conditional on a particular value of Ntotal is given by
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Here, the binomial coefficient is denoted by

.
)!(!

!
gtotalg

totaltotal

g NNN
NN

N −
=







  This distribution is

known as the binomial distribution with probability of success
Q.  If the sample is blank and Ng and Nb are both measurements
of some unknown background with true count rate ρb, then Q =
Qo where
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For example, Q0 = ½ when tg equals tb.

The inference about the presence of activity in the sample is
based on the conditional distribution of Ng given Ntotal.  Hence,
the null hypothesis that the sample is blank is rejected if a blank
sample would have produced a gross count as large or larger
than the observed 100α% of the time or less, that is, if
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To use this rule in practice, one may simply compute the
function on the left hand side of Eq. 16 to give the probability
that the observed Ng was drawn from the same population as Nb
for a given Q0.

Confidence Interval of the Net Activity

The decision level may also be defined in terms of the
confidence interval of the net activity.  In his book Atoms,
Radiation, and Radiation Protection Turner (1995) describes a
decision level similar to one originally proposed by Altshuler
and Pasternack, (1963).  In this process, the decision is made on
the basis of the difference in the gross (Rg) and background (Rb)
count rates, the net count rate Rn:
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Here, σgr
2 and σbr

2  are the variances of the gross and background count rates, respectively.  This is equivalent to Currie’s detection level
(minimum detectable count), when the decision level is set to zero.  Solving the expression for Rn gives
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When tb = tg, the minimum significant count difference, ∆1, is
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Nicholson’s D1 Rule

Nicholson (1963) gives two other decision rules for the net
count rate.  Nicholson’s D1 Rule (1963) is kα times the standard
deviation of the net count rate:
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Nicholson states that D1 uses the “obvious unbiased estimate of
the variance with no restriction on” ρn = ρg - ρb.

Nicholson’s D3 Rule

Nicholson’s D3 Rule (1963) is kα times the sum of the counts
divided by the product of the count times:
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Nicholson states that D3 “optimally weights information about
ρb in both tb and tb,” but that its variance estimate is only
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unbiased if the underlying net rate (due to activity in the
sample), ρn = 0.

Decision Rule Comparisons

Each decision rule described above was evaluated with the
Monte Carlo simulation method described for the Currie
decision rule.  However, only six values of α (0.05, 0.02, 0.01,
0.005,  0.002, and 0.001) were used.   The results are shown in
Figures 2 through 7.

For the ANSI N13.30 rule using N + 1 as the estimator of the
background mean and variance, the nominal alpha values
consistently underestimate the observed false positive rates for
all µb > 2.  At background means less than one, the rule
overestimates the false positives.  This test is considered
inadequate.

For the Nicholson/Sumerling and Darby binomial decision rule,
the nominal alpha values overestimate the observed false
positive rates for all background means, and grossly
overestimate the false positives for µb < 10.  That is, using this
decision rule results in a far smaller proportion of false
positives than α. This test is considered inadequate for low
background counting.

The Turner decision rule produces false positive rates that are
relatively unbiased estimates of α down to µb = 4 for the lowest
α evaluated (0.001), and down to µb = 2 with α = 0.05.  For µb
< 2 , using the Turner decision rule results in a far smaller
proportion of false positives than α.  For equal count times,
Nicholson’s D3 rule produces identical results, but not for
unequal count times.

We have not completed our evaluation of Nicholson’s D1 rule,
but it gives lower decision levels than D3 or the binomial rule
although greater decision levels than Currie’s rule.

Recommendations

None of the rules evaluated provides an unbiased estimate of
the false positive rate at all background means.  Turner’s
decision rule comes the closest, but α is much greater than the
actual proportion of false positives at the lowest background
means.  We are therefore presented with the conundrum in that
our lowest background detectors may not be the most sensitive.
Future work will investigate:

•  Other existing decision rules
•  The effect of varying the background and sample count

time ratios
•  Bayesian applications
•  The effect on minimum detectable activity
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Figure 1 "Observed" False Positives with Given ANSI N13.30 Alpha Values Figure 2 "Observed" False Positives with Various Decision Rules (αααα = 0.05)

Figure 3 "Observed" False Positives With Various Decision Rules (αααα= 0.02) Figure 4 "Observed" False Positives With Various Decision Rules (αααα= 0.01)
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Figure 5 "Observed" False Positives With Various Decision Rules (αααα= 0.005) Figure 6 "Observed" Fase Positives With Various Decision Rules (αααα= 0.002)

Figure 7 "Observed" False Positives With Various Decision Rules (αααα= 0.001)
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